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Approximate layer-averaged equations describing the mechanics of turbid underflows 
are derived. Closure of the equations describing the balance of fluid mass, sediment 
mass, and mean flow momentum provides for the delineation of a three-equation 
model. A description of sediment exchange with the bed allows for the possibility of 
a self-accelerating turbidity current in which sediment entrainment from the bed is 
linked to flow velocity. A consideration of the balance of the mean energy of the 
turbulence yields a constraint on physically realistic solutions to the three-equation 
model. It is shown that the self-acceleration predicted by the three-equation model 
is so strong that the energy constraint fails to be satisfied. In  particular, the turbulent 
energy consumed in entraining new bed sediment exceeds the supply of energy to the 
turbulence, so that the turbulence, and thus the turbidity current, must die. The 
problem is rectified by the formulation of a four-equation model, in which an explicit 
accounting is made of the mean energy of the turbulence. Sediment entrainment from 
the bed is linked to the level of turbulence in the four-equation model. Self- 
acceleration is again predicted, although it is somewhat subdued compared with 
that predicted by the three-equation model. The predictions of both models are 
summarized over a wide range of conditions. 

1. Introduction 
Turbidity currents are sediment-laden underflows that occur in the ocean and 

lakes. They constitute an important mechanism for the transport of littoral sediment 
to deeper waters. In the process of doing so, they have scoured out many (but not 
all) subaqueous canyons. 

It has become apparent that turbidity currents in submarine canyons can attain 
surprisingly swift velocities, as high as 8-14 m/s (e.g. Krause et a,Z. 1970). The 
generation of such high velocities in otherwise still water constitutes a most 
intriguing problem. High velocity is presumably attained as the result of acceleration 
from some lower velocity constituting an initial perturbation. In particular, one may 
speculate that in the absence of such topographic changes as a submerged overfall 
or an increase in canyon-bed slope in the down-canyon direction, the energy for 
acceleration must be derived from the sediment itself. 

The energy of a true turbidity current is obtained from the work performed by the 
downstream component of gravity on the suspended sediment, that is, the sediment 
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drags the water along (Bagnold 1962). It is helpful to consider a submarine canyon, 
the bed of which is covered by a plethora of loose sand of similar composition to the 
sand suspended in a turbidity current flowing over it. If the current is sufficiently 
swift, it may entrain even more sediment from the bed, thus increasing the rate of 
work performed by gravity. As a result, the current may accelerate, thus entraining 
even more bed sediment, in a self-reinforcing cycle. 

The only case for which this process has been observed in any detail is that of 
Scripps Submarine Canyon (Inman, Nordstrom & Flick 1976). Sand is delivered to 
the head of the canyon by littoral drift. During storms, a pattern of edge waves is 
set up along the shore, with an antinode at the head of the canyon. The waves act 
to stir up sand at  the head and to induce a weak, oscillating down-canyon flow, with 
peak velocities as high as 50 cm/s. Initially, discontinuous turbidity currents peel off 
from the head region at  intervals; these dissipate and deposit the sand farther 
down-canyon. If a storm is of sufficient intensity and duration, however, continuous, 
sustained turbidity currents are generated. These develop and accelerate in the 
downstream direction. Velocities as high as 1.9 m/s have been measured not far 
downstream of the head, and Inman et al. (1976) cite circumstantial evidence for 
much higher velocities farther downstream. 

Many attempts have been made to delineate the governing layer-averaged 
equations of motion for density underflows in general, and turbidity currents in 
particular (e.g. Ellison & Turner 1959; Hinze 1960; Plapp & Mitchell 1960; Chu, 
Pilkey & Pilkey 1979; Liithi 1981). Turbidity currents differ from the simple, 
conservative density underflows studied by Ellison & Turner (1959) in that the source 
of the buoyancy difference, i.e. the suspended sediment, is not conserved; suspended 
sediment is free to exchange with bed sediment. This exchange was quantified in 
terms of bed erosion and deposition by Pantin (1979) and Parker (1982). Both Pantin 
and Parker found that this additional degree of freedom allows for the possibility of 
self-acceleration via the entrainment of bed sediment ; Parker called the phenomenon 
‘ignition I. 

The analyses of Pantin and Parker are both concerned with a simple conceptual 
model, i.e. a continuous, spatially uniform flow that is free to change in time. The 
entrainment of sediment from the bed, and deposition thereon, is allowed, but water 
entrainment into the current from above is taken to be negligible. In the light of the 
results of Inman et al. (1976), however, a more realistic conceptual model consists 
of a steady flow developing in the downstream direction, free to exchange sediment 
with the bed and entrain water from above. 

Such a model is pursued herein, in terms of a closed set of layer-averaged equations 
of motion for the flow. In fact two models are derived herein; they are called the 
three-equation model and the four-equation model. The difference between the two 
is that the former does not include an equation of balance for the mean energy of the 
turbulence, whereas the latter does. The latter is necessitated by the breakdown of 
the former under conditions of severe acceleration. Calculations specifically for the 
case of Scripps Submarine Canyon are presented in Fukushima, Parker & Pantin 
(1985). 

2. The layer-averaged equations of motion 

the Appendix to this paper. Herein the results of that analysis are summarized. 
A complete derivation of the layer-averaged equations of motion can be found in 

A dilute turbidity current in a wide submarine canyon with constant down-canyon 
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v 
Clear water 

FIQURE 1 .  Definition diagram, wherein u is velocity and c is volumetric concentration of 
sediment; z1 and z3 are reference axes. 

slope is considered. As shown in figure 1, the flow is taken to be essentially 
two-dimensional. The turbidity current carries uniform non-cohesive sediment with 
fall velocity us, which is free to exchange with similar sediment on the canyon bed. 
I n  the Appendix certain constraints and approximations are imposed to  allow for the 
derivation of layer-averaged equations of motion for non-conservative turbid 
underflows. The important layer-averaged quantities are flow velocity U ,  volumetric 
concentration of suspended sediment C, layer thickness h, and level of turbulence 
(mean turbulent kinetic energy per unit mass) K. Some auxiliary parameters axe the 
velocity of entrainment we of clear water from above, the near-bed volumetric 
sediment concentration (averaged over turbulence) Cb, the bed shear velocity u,, and 
the vertical volumetric Reynolds flux of suspended sediment F, where 

F = c "  (1) 

as defined in (A 19). Note that the value of F near the bed is denoted Fb. and is 
quantified in terms of a dimensionless coefficient of bed sediment entrainment Es, 
where 

USEs = Fb. (2) 

The layer-averaged equations of balance of fluid mass, sediment mass, and 
momentum, (A 37), (A 43), and (A 44) can be cast in the respective forms 

ah dUh -+- = e ,  U ,  
at ax (3) 

where 



148 G. Parker, Y .  Fukushima and H .  M .  Pantin 

and the coefficient of water entrainment from above is given by 

-3  
ew- U '  

Also, R denotes the submerged specific gravity of the sediment ; i t  is taken to be equal 
to the value for quartz, 1.65, herein. 

The mechanism for self-acceleration is intimately associated with the right-hand 
side of (4), which can be written with the aid of (6) as v,(E,-cb). If E, exceeds cb, 
the current entrains more sediment than i t  loses through deposition. As a result, the 
currL--b may become heavier, increasing the term RgChS that quantifies the driving 
force of the current in ( 5 ) .  As a result the current may accelerate. The increase in 
U can be expected to increase the sediment entrainment rate v, E, in a self-reinforcing 
cycle. It is the nature of this mass-momentum interaction that is the topic of the 
present paper. 

Turbulent energy is expended, however, in both maintaining the existing load in 
suspension, and entraining new sediment from the bed. An arbitrarily large rate of 
entrainment of sediment from the bed cannot be maintained because the rate of 
expenditure of turbulent energy may exceed the supply from the mean flow. This 
would eventually cause the turbulence to collapse, the sediment held in suspension 
to settle out, and the current to die. Such an energy constraint can best be quantified 
in terms of the layer-averaged equation of balance of turbulent kinetic energy (A 46). 
When reduced with the aid of (A 48), (6) and (7),  i t  takes the form 

= u: U+!jVew-s,h-Rgv,Ch-~RgChUew-~Rghv,(E,-roC). ( 8 )  
aKh aUKh -+- 

at ax 

The first two terms on the right-hand side of (8) quantify the rate of production 
of turbulent energy. I n  the next term, so denotes the layer-averaged mean rate of 
dissipation of turbulent energy due to viscosity. The final three terms represent the 
rate of turbulent energy expenditure due to  working against the density gradient. 
These three final terms can be simply related to the buoyancy flux, given by RgF; 
it can be shown from (A 14) and (A 23), and the general assumptions of the Appendix, 
that  

m 

/ Rg J' F dz = Rgv, Ch + iRgChw, + iRghv,(E, - cb), (9) 
0 

that  is the three terms on the right-hand side of the above equation, which are also 
t,he three final terms on the right-hand side of (8), quantify the effect of sediment- 
induced stratification. 

3. A generalized KnappBagnold constraint 
The first term on the right-hand side of (9) is the KnappBagnold term (Knapp 

1938; Bagnold 1962). It represents the work necessary to  maintain a given suspension 
in equilibrium, so as to prevent the sediment from falling out. The second term 
pertains to a layer that thickens by the entrainment of water from above, as 
illustrated in figure 2. As the layer thickens, turbulence acts to raise the centre of 
gravity, and thus the potential energy of the suspension, expending kinetic energy 
in the process. I n  the present simplified treatment, the centre of gravity of the 
suspension is a t  !jh, and the rate of increase of thickness of the suspension layer due 
to water entrainment from above is we. The final term, illustrated in figure 3, likewise 
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FIQURE 2. Illustration of the effect of water entrainment from above on the sediment. For simplicity, 
a vertically uniform current with concentration C and height h is considered. As water is entrained 
and mixed by turbulence into the suspension, the centre of gravity rises. The resulting increase 
in the potential energy of the suspension is thus obtained at the expense of a loss of the turbulent 
kinetic energy that accomplished the mixing. 
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FIQURE 3. Illustration of the effect of sediment entrainment from the bed on energy balance. The 
case for which E, > c,, is considered. As sediment is entrained from the bed, i t  is mixed by 
turbulence throughout the suspension. As a result, the weight of the suspension per unit area, and 
thus its potential energy, increases. This increase is again obtained at the expense of the turbulent 
kinetic energy that accomplished the mixing. 
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quantifies the energy expended in lifting up newly entrained sediment and 
incorporating it into the suspension (at an average elevation of +h above the bed). 
The term can be positive (representing a kinetic energy loss) or negative (representing 
a kinetic energy gain), depending upon whether or not the entrainment rate of 
sediment from the bed v, E, exceeds the deposition rate v, cb. 

An important parameter governing the behaviour of stratified, slender flows is the 
Richardson number 

If the Richardson number exceeds a critical value near unity, the flow is termed 
subcritical. The entrainment of water from above becomes small, and we can be taken 
to vanish (Turner 1973). Under these constraints, (3), (4), (5) and (8) possess 
equilibrium solutions with constant values of U ,  C ,  h and K .  From (5 ) ,  the 
momentum balance is 

U: = RgChS. (11)  

E, = c,,. (12) 

u $ U =  RgChUS=E,h+Rgv,Ch. (13) 

From (4), the sediment mass balance reduces with the aid of (6) to 

From (8), (A 47), (A 48), ( 1  1) and (12), the energy balance of the turbulence is thus 

Equation (13) has a simple interpretation. For turbid underflows of the type 
illustrated in the figure, gravity does no work on the fluid phase. The term RgChUS 
represents the power supplied to the flow by the action of the down-slope component 
of gravity on the suspended sediment. This energy must be expended in working 
against the vertical pull of gravity in order to hold the sediment in suspension, and 
in viscous dissipation. It is seen from (A 22) that E ,  and thus its layer average eo, is 
a non-negative quantity. It follows from (13) that a necessary condition for an 
equilibrium, self-sustaining turbid underflow of constant thickness is the condition 

(14a) U$ U = RgChUS > Rgv, Ch, 

or 
us 
- > 1.  
8.5 

Equation ( 1 4 b )  is the KnappBagnold criterion. Knapp (1938) and Bagnold (1962) 
argued further that if it is satisfied, the concentration, and thus the velocity of the 
turbidity current might rise indefinitely because according to (14a) more energy is 
fed in via the sediment than is consumed in holding it in suspension. 

The criterion (14b), however, is not in fact sufficient for either an equilibrium or 
an accelerating turbidity current, as Parker (1982) indicated. Indeed, (14b) must be 
generalized as even a necessary condition if it is to be applied to  the supercritical 
(Ri  < 1) disequilibrium currents studied herein. 

Equation (8) can be recast in the form 

K -+u-= aK ui U+fU3ew-Eo-Rg[v ,C+~e,  U C + ~ , ( E , - r , C ) ] - e , ~  U .  (15) aK 
at ax h 

It follows, then, that if the inequality 
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fails to be satisfied over a sufficiently long reach or flow a sufficiently long time, the 
turbulence must die. As a consequence, all the sediment would settle out, and the 
current itself would die. 

It should be emphasized that criterion (16) puts limits on, rather than makes 
possible, self-acceleration. In  particular, it will be shown that sustained accelerating 
flows with large sediment entrainment rates (large E,) are not physically possible, 
even though they satisfy mass and momentum balance; such flows consume more 
turbulent energy in suspending new sediment than is available from the flow. 

4. Steady flows developing in the downstream direction 
As noted in the Introduction, steady flows developing in the downstream direction 

are considered herein. Under this constraint (3), (4), (5) and (8) can be cast in the 
respective forms 

u2 l v  
-RRiS+e,(2-@i)+~+-"roRi 

dh u2 2u _ -  - 
dx (1 - Ri) , 

- 
U dx (1-Ri) 

In the above equations $ = UCh denotes the volumetric suspended-sediment 
transport rate per unit width, and 

E, hU 
k = 7  

denotes the equilibrium value of $ at which neither erosion nor deposition would 
occur, as can be seen from (6), (12) and (17b). 

It is of interest to note that for the case of a simple conservative density current, 
for which v, = 0, (17a-c) reduce (for order-one shape factors) to the relations of 
Ellison & Turner (1959). 

5. Closure for the three-equation model 
The simplest tenable model of eroding and depositing turbidity currents consists 

of the balance equations of fluid mass, sediment mass and momentum, herein termed 
the three-equation model. This format has been employed for the analysis of both 
conservative and non-conservative density flows, e.g. Ellison & Turner (1959) and 
Longuet-Higgins & Turner (1974). The models of Pantin (1979) and Parker (1982) 
of non-conservative turbidity currents are also of this type, although e, is taken to 
vanish in both models, and momentum balance is replaced with overall energy 
balance in the model of Parker (1982). 

Assumptions for the water entrainment coefficient e,, sediment entrainment 
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coefficient E,, shear velocity u*, and concentration ratio ro are required to close the 
set (17a-c). The relation for water entrainment is taken to be 

0.001 53 
0.0204 -k Ri ' 

e,(Ri) = 

According to (19), as Ri approaches zero, e ,  approaches a value of 0.075, appropriate 
for non-stratified flows. As Ri becomes much larger than 0.0204, the formula of 
Egashira (1980), extensively supported by data for density-driven flows, is obtained. 

Owing to the lack of information pertaining to turbidity currents from which a 
functional form for ro could be determined, recourse was made to open-channel 
suspensions, for which the Rousean distribution has been found to apply. Evaluating 
c, at z = b = 0.05h, where h denotes open-channel depth in this case, Parker (1982) 
obtained the following approximate form : 

ro = 1 + 3 1 . 5 ~ - ' , ~ ~ ,  (20) 

where u* 
V ,  

p = - .  

Recently Garcia (1985) has tested this formula for three sets of laboratory turbidity 
currents, as shown in figure 4(a). For the range 5 < UJV, < 50 the agreement is 
acceptable, although a constant value of ro of about 1.6 would also approximate the 
data well. 

Akiyama & Fukushima (1985) used data for open-channel suspensions in flumes 
and rivers to determine the following relation for E,: 

where 

and the particle Reynolds number 

In (24), u denotes the kinematic viscosity of clear water, and D, denotes grain 
diameter. In  (22), 2, is a critical value for the onset of significant suspension, 
approximately equal to five, and the value 2, = 13.2 denotes a maximum value of 
2 beyond which E, becomes constant with a value of about 0.3. The data used in 
deriving the relationship were determined for grain diameters in the 0.06-1.00 mm 
range. Equation (22), although determined from open-channel suspensions, has been 
applied herein to turbidity currents, since direct information concerning E, was 
lacking for underflows. Garcia's (1985) recent work has allowed for a test of this 
relationship for a set of experimental turbidity currents. Although the scatter is 
large, mostly owing to experimental technique, the data from turbidity currents 
seem to follow the trend of the flume data analysed by Akiyama & Fukushima (1985), 
as shown in figure 4 ( b ) .  

Finally, the relation for bed stress is taken to be 

u; = CD iY, (25) 
where cD is a coefficient of bed drag. In  general, cD can be expected to be a function 
of boundary-layer parameters; herein it is approximated as constant in time or in 
the downstream direction for a given current. 
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6. Computations with the three-equation model; breakdown of the model 
Equations (17a-c) are to be solved downstream of the canyon head, at which the 

upstream values U,,, $, and h, are specified. It is possible to  integrate (17a-c) 
downstream of a source only for the case of supercritical currents (Ri < 1) .  

In  the case of simple, conservative density currents (w, = 0 in the context of the 
present models), equilibrium solutions exist such that the right-hand sides of (17b) 
and ( 1 7 4  vanish. These solutions are characterized by a constant Richardson 
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number Ri, constant values of U and $ and a layer thickness h that  increases linearly 
in the downstream direction (e.g. Ellison & Turner 1959). 

No such equilibrium solutions exist for turbidity currents (w, # 0). Nevertheless, 
for a given value of upstream layer thickness h,, a pseudoequilibrium can be defined 
by setting equal to  zero the right-hand sides of (17 b,  c) at x = 0. The lowest finite 
values of U and $ so found are denoted as U, and $, and are said to describe the 
ignitive state (Parker 1982). The ignitive concentration C, is found from the relation 

$1 = 4 c, ho. 

Even though the ignitive state does not constitute a true equilibrium for the currents 
studied herein, i t  will nevertheless be shown to provide a useful indicator of whether 
or not a current with given upstream conditions eventually accelerates or subsides. 

According to (17b, c ) ,  and the closure hypotheses of the previous section, the 
ignition values U,  and $, of the three-equation model can be computed uniquely if 
the dimensionless numbers S ,  cD,  h,/D, and the particle Reynolds number Rp, 
defined by (24), are specified. R, is used to compute the fall velocity v, from the 
drag curve for spheres (e.g. Parker 1978). For simplicity herein, the value of v for 
clear water at 20 "C is used, so that grain size D, can be used as a surrogate for 

A perusal of the literature (Komar 1977; Inman et al. 1976; Shepard & Dill 1966) 
suggested that the following values might be typical of sand submarine canyons 
likely to serve as conduits for turbidity currents: D, = 0.1 mm; S = 0.05; 
c ,  = 0.004; h, = 2 m. Values of U,, C,, 4, and the Richardson number a t  ignition 
Ri, = RgC, h, /Ui ,  computed from the three-equation model with the above values, 
are shown in table 1. It is seen from the value of C, that the suspension is dilute; a 
value of U,  of 0.65 m/s is sufficiently modest to be attainable in the near-shore 
environment by wave action or river inflow. 

The ignition state of the three-equation model is not explored in more detail. The 
values are similar to those of the four-equation model, which will later be shown to 
be the superior of the two models. 

The standard step method can be used to obtain numerical solutions to  (17a-c). 
Upstream values U,, $, and h, are specified, and the downstream development of 
the current is computed. All such currents are found to either ignite or subside. The 
solutions may be represented in terms of a phase space ( U , $ , h ) .  Herein, for 
simplicity of presentation, this phase space is projected onto the phase plane ( U ,  $), 
which is further normalized into the form ( U / U , ,  $I$,). 

In  figure 5,  such a phase plane has been computed for the case of table 1 pertaining 
to the three-equation model; h,/D, = 2 x lo4, cD = 0.004, D, = 0.1 mm and S = 0.05. 
Only that part of the plane for which Ri < 1 is of interest herein. It is seen that this 
region is divided into igniting and subsiding subregions by the autosuspension 
generation line (AGL). A given current first tends to accelerate or decelerate toward 
the convergence line (CL). This 'backwater effect' occurs in open-channel flow, and 
has been described for conservative density currents by Ellison & Turner (1959). It 
is controlled by the difference between the upstream Richardson number and the 
Richardson number of the convergence line. 

The convergence line is in fact a narrow band rather than a single line, the band 
resulting from a projection of a space onto a plane. Part of the convergence line is 
computed using the ignition values U ,  and $, as upstream values. In  this case, and 
in fact in all cases involving the use of the three-equation model, a current eventually 
accelerates from ignition. The ignition point, however, is seen to be very close to the 
autosuspension generation line. 

RP. 
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Ri, KI(m2/s2) 

Three-equation 0.1 0.004 0.05 2.0 0.652 3 . 7 8 ~  2 . 9 0 ~  0.221 - 
model 

Four-equation 0.1 
model 0.1 

0.1 
0.1 
0.1 
0.1 
0.1 
0.2 
0.04 
0.04 
0.04 
0.04 
0.04 
0.04 

CD' 

0.004 0.025 2.0 
0.004 0.05 0.5 
0.004 0.05 2.0 
0.004 0.05 8.0 
0.004 0.1 2.0 
0.002 0.05 2.0 
0.01 0.05 2.0 
0.004 0.05 2.0 
0.01 0.05 0.08 
0.01 0.05 0.16 
0.01 0.05 0.32 
0.02 0.05 0.16 
0.004 0.05 0.16 
0.004 0.05 0.80 

1.162 2.65 x 
0.967 1.13 x 
0.874 8.29 x 
0.798 6.26 x 
0.736 3.57 x 
1.193 2.01 x 
0.613 3.18 x 
1.834 7.44 x 
0.194 1 . 1 3 ~  
0.185 9.62 x lop5 
0.179 8.73 x 
0.138 4.97 x 
0.283 2.92 x 
0.252 2.05 x 

1.14 x 0.272 2.13 x 
2.34 x 0.203 2.40 x 

9 . 8 0 ~  lo-* 0.199 1.41 x 
4.74 x 10-3 0.201 1.83 x 10-2 

2.42 x 10-3 0.144 1.64 x 10-2 

8.40 x 10-3 0.191 2.02 x 10-2 

7.28 x 10-3 0.250 2.51 x 10-3 

2.59 x 0.223 1.66 x 
1.01 x 0.195 6.21 x 

3.26 x 0.247 2.19 x 
1.52 x 0.245 2.01 x 
2.26 x 0.308 2.06 x 
6.44 x 0.208 2.46 x 
1.02 x 0.207 1.88 x 

TABLE 1. Typical values at ignition. 
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In figures 6 and 7 (a-d), the development of currents commencing from the ignition 
point, and from points (a ) ,  ( b ) ,  ( c )  and ( d )  of figure 5, are shown. The currents so 
calculated are not necessarily physically possible. In particular, the three igniting 
currents show an extremely rapid increase in the sediment transport rate $. This 
increase is driven by values of the entrainment rate of bed sediment that far exceed 
the deposition rate. i.e. 
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FIQURE 6. Current development from the ignition point of figure 5. 
The condition (16) fails to be satisfied downstream of the dagger. 
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in (17b),  or using (18) E, % r, C .  In  fact E, is so large that the energy constraint (16) 
fails to be satisfied for all points downstream of the dagger in figures 6, 7(a, b ) .  I n  
general, it is found that none of the flows in the igniting subregion of figure 5 are 
physically possible; E, is so large that the turbulent energy consumed in entraining 
new bed sediment would cause the turbulence to  collapse. 

This breakdown of the three-equation model is not peculiar to the particular values 
of D,, S ,  cD,  and h, chosen for the above example, but rather occurs over a wide range 
of parameters. As a result, the model is not investigated in more detail. 

7. Closure for the four-equation model 
The failure to include an  explicit accounting of the energy balance of the 

turbulence is the cause of the breakdown of the three-equation model. According to  
(21), (22) and (23), the sediment entrainment coefficient E, is linked to u,; by (25), 
it is further linked to flow velocity U .  This linkage is crucial to the mass-momentum 
interaction between (17b) and (17c) that  gives rise to  ignition, but as ignition 
proceeds E,  becomes so large that constraint (16) fails. 

The essential factor in entraining bed sediment is not, however, the magnitude of 
the velocity U ,  but rather the state of the turbulence, as can be seen from (2) and 
(A 19). I n  a more properly constituted model, then, E, might be specified as an 
increasing function of the level of turbulence K .  If the equation of energy balance 
of the turbulence (17d) were included explicitly in the model, large values of E, would 
damp the turbulence, reducing K until smaller, sustainable values of K and E, are 
realized. As a result, lower but sustainable rates of ignition might be possible. 

Such linkage is established herein through the shear velocity u*. I n  particular, the 
previous closure assumptions for r,,, e ,  and E, are retained, so that E, is still a 
function of u*. Closure assumption (25), however, is replaced with the assumption 
for fully turbulent flow 

(26) u; = aK, 
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FIQURE 7(a ,b) .  For caption see p. 158. 

where a is approximated to be constant for a given flow. Using (A 13), (A 26) and 
(A 36b), and setting the velocity shape factor cu equal to unity, (26) approximates 
to 

The linkage provided by (27) relates one turbulent quantity to another, and is thus 
in one sense more reasonable than that provided by (25). It can be criticized in that 
it relates one near-bed turbulent quantity with another layer-averaged quantity, 

6-2 
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F’IGIURE 7. (a) Current development from point (a) of figure 5. The condition (16) fails to be satisfied 
downetream of the dagger, here at the origin. ( b )  Curmnt development from point ( b )  of figure 5. 
The condition (16) fails to be satisfied downstream of the dagger. ( e )  Current development from 
point (c) of figure 5. ( d )  Current development from point ( d )  of figure 5. 

that is, the near-bed Reynolds stress may not be closely linked to the turbulence 
produced in the shear layer above the peak in mean velocity (see figure l ) ,  even 
though K includes a contribution from this region. A similar criticism, however, 
could be levelled at  the three-equation model, and indeed at  any layer-integrated 
treatment. 

Equation (25) can be retained as a definition for cD,  which now becomes a 
computed rather than a specified parameter. Even if 01 is constrained to be constant 



Self-accelerating turbidity currents 159 

for a given flow, it is seen from (25) and (26) that cD no longer need be constant in 
time or in space for that flow, as 

K 
u2 

cD = a--, 

that is cD is proportional to the ratio of turbulent kinetic energy to the kinetic energy 
of the mean flow. 

The four-equation model thus consists of (17a-d) with the previous closure 
assumptions for ro, E, and e, and (26) for u*. One more closure hypothesis is required, 
however; in (17d), it is necessary to have an independent expression for the viscous 
dissipation rate e0. Since a t  least the time of Kolmogorov (see Launder & Spalding 
1972) the following type of assumption has been widely used : 

K; 
Eo = p-. 

h 

The dimensionless parameter B is presumably related to other flow parameters. 
Herein a treatment of simple, conservative density currents is used to obtain an 
approximate expression for 8. 

As pointed out previously, with regard to the three-equation model, the case of 
the conservative density current is realized by setting us = 0 in (17a-d). The 
four-equation model also admits equilibrium solutions, but in this case K is constant, 
as are U ,  @ and (by implication) Ri. Equation (17a) again reduces to 

so that layer thickness increases linearly downstream. 
Herein ,5 is evaluated for a simple, conservative density current by requiring that 

the three-equation and four-equation models predict the same equilibrium state. To 
this end, a particular current with specified values of U ,  C and h at some point is 
considered. Let cD* be the coefficient of bed friction that this current would possess 
if it were indeed at  equilibrium, i.e. the associated equilibrium coefficient of bed 
friction. According to the three-equation model, (25) dictates that 

cg = CD*, 

whether or not the current is in fact at equilibrium. In the four-equation model, 
however, cD is given by (28), and is equal to cD. only at that particular value of K 
associated with equilibrium flow ; i.e. 

cD+ = aL1 
equilibrium' 

If (29) and (30) are inserted into (17d) and reduced for the case of spatial 
equilibrium with v, vanishing, it is found that 

It is easily verified that the use of (30) in (17 c) ensures that the equilibrium relations 
between U ,  C and h obtained from the three-equation model are identical to those 
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obtained from the four-equation model for the case vs = 0 ; thus both models predict 
the same normal Richardson number. 

The local turbulent viscous dissipation rate E ,  and thus its layer average E,,, are 
non-negative quantities, vanishing only when there is no turbulence. It follows from 
(29) that /3 must be positive. In (31), cD.  and a are positive. Since in addition e, is 
also non-negative it follows from (31) that /3 is positive if 

It is seen from (30) that the ratio 2cD./a equals the ratio of mean turbulent energy 
to the energy of the mean flow. This ratio can be expected to be small for the type 
of flows under consideration herein. The term in brackets on the right-hand side of 
the above inequality will therefore be greater than Ri for most supercritical flows 
(Ri < l),  excepting only those with a Richardson number very close to unity. Near 
the condition Ri = 1 ,  however, e, drops drastically and for subcritical flows (Ri > l) ,  
e, becomes so small that it  can be taken to vanish as an approximation. The final 
term on the right-hand side of the inequality thus becomes very large for subcritical 
and only slightly supercritical flow, so /3 can be expected to be positive in general. 

It is now proposed that (31), obtained from considerations of equilibrium flow of 
simple density currents, be extended as an approximation to the case of disequilibrium 
turbidity currents, and used in the four-equation model. It should be noted that even 
in the case of a simple density current, the solutions for disequilibrium flow (and in 
particular, the disequilibrium value of cD)  from the four-equation model can be 
expected to differ from those obtained from the three-equation model. In the 
three-equation model, then, cD is a specified parameter, whereas in the four-equation 
model, the parameter a and the associated equilibrium coefficient of bed friction cD. 
are specified, and the actual value of cD is then computed by solving for the flow. 

8. Test of the four-equation model 
The closure scheme of the four-equation model differs from the more familiar 

scheme of the three-equation model, and thus requires verification. Data pertaining 
specifically to turbidity currents are not available. In the case Ri = us = 0, however, 
the governing equations (17a-d) were used to study the limiting case of a plane wall 
jet. 

Rajaratnam (1976) has summarized experimental data from five researchers on 
plane wall jets; the points in figure 8 (a) have been adapted from figure 10-7 therein, 
with the addition of the data of Mathieu & Tailland (1965). The four-equation model 
was used to compute jet development downstream of a point twenty nozzle 
thicknesses downstream of the actual inlet, to avoid complications associated with 
the potential core. It was found that the data could be predicted with the 
three-equation model using a value of e, of 0.05; accordingly, the same value was 
used in the four-equation model. The data corresponds to various bed-friction 
factors, but fortunately wall jet velocity U is only weakly dependent on bed friction. 
Accordingly, calculations were performed using values of the equilibrium coefficient 
of bed friction cDS ranging from 0.002 to 0.01. 

In  figure 8(a) ,  the curves represent velocity plotted as a function of downstream 
distance, with cD. as an auxiliary parameter. Also a has been set equal to 0.1, and 
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it  is furthermore assumed that the actual upstream friction factor cD0, seen from (28) 
to be given by 

is set equal to the equilibrium value cD.. This assumption implies that the turbulence 
is completely developed. It is seen that the agreement is reasonable over the chosen 
range of values of cD8. 

In  figure 8 ( b ) ,  the effect of varying the upstream level of turbulence is studied. 
That is, cDo is allowed to vary from a vanishing value, corresponding to the absence 
of inlet turbulence, to a value corresponding to double the equilibrium level of 
turbulence. Again a is set equal to 0.1, and cD* is 0.004. The effect of the initial level 
of turbulence on jet development is seen to be very small. 

&KO 
‘DO = 7’ 

0 
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FIGURE 8. (a) Plot of UIU, vs. x/ho for plane wall jets, showing the effect of varying c,. on the 
predictions of the four-equation model. The points represent experimental data. 0,  Myers et al. 
(1961); 0,  Sigalla (1958); A, Schwarz & Cosart (1961); ., Gartshore & Newman (1969); A, 
Rajaratnam (1976); 0,  Mathieu & Tailland (1965). The curves represent calculations based on the 
four-equation model. a = 0.1. (b) Plot of U / U ,  vs. xlh, for plane wall jets, showing the effect of 
varying cDo on the predictions of the four-equation model. ---, cDo = 0; -, 0.004; ---, 0.008. 
eD. = 0.004, a = 0.1. (c) Plot of U / U ,  vs. xlh, for plane wall jets, showing the effect of varying a 
on the predictions of the four-equation model. -, a = 0.05; -.-*-, 0.1; ---, 0.5. cD. = 0.004, 

xlh, 

e,, = 0.004. 

Likewise, in figure 8(c)  the effect of varying a is studied, for the case 
cDo = cD. = 0.004. The downstream development of jet velocity is seen to be 
essentially independent of a as i t  varies from 0.05 to 0.5. 

In  conclusion, the four-equation model can be used to predict the development of 
flow velocity U in plane wall jets. 

9. Computations with the four-equation model 
Analogously to the three-equation model, an ignitive state for the four-equation 

model can be defined in terms of the lowest roots U,, +, and KI such that the 
right-hand sides of ( 1 7 b d )  vanish for a given value of h,. Again the ignitive state 
is not a true equilibrium, but proves useful in quantifying ignition versus subsidence 
of a current. 

For the case of the four-equation model S, cDl ,  ho/D,, R, (or rather D, herein) and 
a must be specified in order to determine the ignition values U,, +,, and K,. Very 
little information is available concerning the value of a. The data of Mathieu & 
Tailland (1965) for wall jets suggest a value of about 0.1, but different values might 
be expected for a density-driven flow. Fortunately, the dependence of U, and +I, 

(and thus CI) on a is exceedingly weak. In particular, in the limit as TI, vanishes, the 
ignition state is replaced by a true equilibrium; the equilibrium values of U ,  + and 
C can be shown to be strictly independent of the value of a. As long as us/ U remains 
small, as can be expected to be the case for most turbidity currents of interest, not 
only the ignition values U,, +I and C,, but also the downstream development of U ,  
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U U,(mls) c, K,(m21s2) u*,(mls) B 
0.05 1.24 5.04 x 10-3 7.98 x 6.32 x 0.305 
0.10 1.24 5.04 x 10-3 3.99 x 10-2 6.32 x 0.905 
0.50 1.23 4.97 x 10-3 7.97 x 6.31 x 10.5 

TABLE 2. Values of parameters at ignition for various values of a; D, = 0.15 mm, cD. = 0.004, 
S = 0.08, and h, = 3 m. Calculations are based on the four-equation model 

U U(mls) C h(m) 
0.05 1.93 5.21 x 8.10 
0.10 1.98 5.68 x 10-3 7.91 
0.50 1.94 5.39 x 10-3 7.99 

TABLE 3. Values of U ,  C and h computed 1000 m downstream from the origin, using the parameters 
of table 2. The computations commence from ignition. 

$, C and h, can be shown to be only weakly dependent on the value of a. Some 
examples are presented in tables 2 and 3 for the case Ds = 0.15 mm, cD* = 0.004, 
S = 0.08, and h, = 3 m, chosen to be typical of Scripps Submarine Canyon (Inman 
et al. 1976; Fukushima et a2. 1985). As a varies over an order of magnitude from 0.05 
to 0.5, U ,  varies by less than 1 % , and C, varies by leas than If yo. The reason for this 
is apparent from the values of u,,. K ,  itself varies over an order of magnitude in a; 
the values of u* computed from (26), however, are seen to be essentially constant. 
Since u* characterizes the bed resistance and controls the sediment entrainment rate 
E,, the near-constancy of U ,  and C,  follows. Based on these considerations, a is set 
equal to 0.1 herein. 

Values of U,, C,, +I, Ri, and K ,  computed from the four-equation model for a 
variety of D,, S, cD. and h, are shown in table 1. Comparing the results for the case 
D, = 0.1 mm, S = 0.05, cD+(cD) = 0.004 and h, = 2 m, it is seen that the values of U,, 
C, and Ri yielded by the three-equation and four-equation models are rather similar. 
Henceforth all results concerning ignition pertain to the four-equation model. 

In figure 9(a,  b, c )  U,, C ,  and Ri, respectively, are plotted as functions of ho/D,, 
and the auxiliary parameters S and D,; cD* is set equal to 0.004. It is seen that higher 
slopes and finer sediment (as long as it is non-cohesive) are conducive to reducing 
the values of U,  and C,. In  figure 9 (c) it is seen that the ignition Richardson number 
Ri, is almost independent of h, and D,, but strongly dependent on S, for a given value 

In figure 10(a, b) Ri, and C, respectively, are plotted as functions of S, with cD8 
and D, as auxiliary parameters; ho/D, is set equal to 2 x lo4. It is seen that Ri, is 
not strongly dependent on cD.. Figure 10(b) suggests the difficulty of attaining the 
ignition state with coarse sediment on low slopes. 

The standard step method is again used, this time to solve (17a-d) numerically, 
for the downstream development of currents with prescribed upstream values U,, $o, 
h, and KO. In order to reduce the number of cases to be computed, and allow for 
projection of the results onto a ( U/U, ,  $I+,) phase plane, KO was not allowed to vary 
freely. The following simple rule was applied in selecting K O :  

of CD+.  
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FIGURE 9(a ,b) .  For caption see facing page. 

Physically, (32) can be interpreted as follows. The ratio of turbulent energy to 
mean flow energy at z = 0 is always set equal to  the value a t  ignition. From (28), 
it is seen that (32) equivalently implies that  the initial bed-resistance coefficient cD 
is always equated to the value a t  ignition (which can be expected to differ somewhat 
from the value associated with an  equilibrium conservative density current, cD+) .  It 
should be emphasized, however, that  the use of (32) is purely a matter of convenience. 
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FIQURE 9. (a) Plot of U ,  us. ho/D, for the four-equation model; (a) C, us. ho/D, for the four-equation 
model; (c) Ri, vs. ho/D, for the four-equation model. cD. = 0.004; D, and S sellre as auxiliary 
parameters. 

A current with upstream values U,, $, and h, that subsides if KO is computed from 
(32), may indeed ignite if KO is taken to be substantially higher. In  particular, the 
value of KO computed from (32) might be reasonable where the turbidity current 
is a natural continuation of deltaic river flow, but might be too conservative where 
the turbidity current is generated by edge wave action, as is the case for Scripps 
Submarine Canyon (Inman et al. 1976). 

In figure 11, a phase-plane projection analogous to that of figure 5 has been 
constructed using the four-equation model. Again D, = 0.1 mm, cD. = 0.004, 
8 = 0.05, and ho/D, = 2 x lo4. A comparison of figures 5 and 11 indicates qualitative 
agreement between the predictions of the three-equation and four-equation models. 
Although the absolute values of U, and $I are larger in the case of the four-equation 
model, the autosuspension generation line is displaced downward in figure 11 
compared with figure 5. As a result, the predictions of the two models as regards 
whether a given current ignites or subsides do not differ greatly. 

Both the ignition and subsidence of currents predicted by the four-equation model 
are, however, subdued compared with the three-equation model. The downstream 
development of U ,  $ and h computed from ignition are shown in figure 12, and the 
cases of currents igniting from points (a) and (b) of figure 11 are shown in figure 
13(a, b). A comparison of figures 12 and 6, 13(a) and 7(a) ,  and 13(b) and 7 ( b )  
indicates that the increase in $ in the downstream direction, while marked, is far less 
rapid in the case of the four-equation model. In fact, the structure of the four-equation 
model is such that rapid ignition leading to the collapse of the turbulence cannot 
occur. If E, is too large, according to (8) and (17d), K is reduced; this reduces u* 
according to (26), and thus consequently E,. As a result $ increases less rapidly, 
and the acceleration is sustainable in terms of the balance of turbulent energy. 

The downstream increase in velocity in the case of figures 12 and 13 (a,  b )  is rather 
modest, even at a point lo00 m downstream of the canyon head. Although not shown 
on the figures, substantially higher velocities are reached farther downstream. In the 
case of the curve shown in figure 12, a velocity equal to 2.3 times the upstream value 
is obtained 3000 m downstream of the canyon head. 

In figure 13 (c, d )  subsidence predicted by the four-equation model from points ( c )  
and (d) of figure 11 is shown. The subsidence is much less rapid than that predicted 
by the three-equation model. 

In figure 14 the ratio of turbulent kinetic energy to the energy of the mean flow, 
K / ( ; V ) ,  is plotted for the five cases corresponding to figures 12 and 13(a-d). There 
is a substantial damping of turbulence, and thus a reduction of the bed-resistance 
coefficient cD according to (28), for the three igniting currents. The opposite 

h O l 4  
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FIQURE 10. (a) Plot of Ri, vs. S and (b)  C, us. S ,  for the case h,/D, = 2 x lo4; 0, and cD. serve 
aa auxiliary parameters. 
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FIQURE 11. Phase diagram computed from the fouraquation model, for the owe 
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FIQURP: 12. Current development from the ignition point of figure 11. 

behaviour is shown for the two subsiding currents. In the three-equation model, on 
the other hand, the bed-resistance coefficient is specified beforehand (constant values 
have been assumed herein). 

The drop in the coefficient of bed resistance is not associated with any particular 
ease of acceleration, The acceleration realized in the case of the three-equation model 
is much more rapid, even though cD is held constant. 
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FIGURE 13(a,b) .  For caption see facing page. 

One aspect of the four-equation model is the existence of damped periodic (‘wavy ’) 
solutions. This type of behaviour can be seen in the initial parts of some of the curves 
presented here, notably in figure 13(a-c). 

Figure 15 shows the downstream development of the Richardson number, based 
on the results of calculations from ignition, with the conditions specified in figures 
5 and 11. A characteristic of the four-equation model is the near-constancy of the 
Richardson number along the convergence line. On the other hand, along the igniting 
part of the convergence line of the three-equation model the Richardson number 
rapidly approaches unity, implying an incipient hydraulic jump. The near-constancy 
of the Richardson number along the convergence line of the four-equation model does 
not imply an equilibrium state, but rather that $ increases (or decreases) as V, since 
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FIGURE 13. Current development (a)  from point (a) of figure 11  ; (b)  from point (6) of figure 1 1  ; 
(c) from point (c) of figure 1 1 ;  ( d )  from point (d) of figure 11.  

In figure 16(u-d), some indication of the sensitivity of the autosuspension 
generation line to variations in h,/D,, D, (as a surrogate for R p ) ,  cD* and S is 
provided. All diagrams are based on calculations using the four-equation model, and 
are plotted in the form of U / U ,  us. $/$I so that the ignition point remains at  ( 1 , l ) .  
Figure 16(a, b )  show that the position of the autosuspension generation line is not 
very sensitive to variation in h,/D, and D,. A somewhat more substantial variation in 
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FIQURE 14. Ratio of mean turbulent kinetic energy to kinetic energy of the mean flow 
as a function of distance downstream for the cases of figures 12 and 13(a-d). 
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FIQURE 15. Comparison of the downstream development of the Richardson number in the cases 
of figure 6 (three-equation model computed from ignition) and figure 12 (four-equation model 
computed from ignition). 

the autosuspension generation line is apparent in figure 16(c) as cD+ is varied; as cD* 
increases, the region of ignition retreats upward. In addition, variation in cD* is seen 
to cause a modest change in the position of the line corresponding to a Richardson 
number of unity. By far the largest variation is seen in figure 16(d) as S is varied, 
with a substantial upward retreat of the region of ignition as slope decreases. The 
implication is that ignition may be very difficult to achieve on low slopes. 

Several calculations were performed to test the sensitivity of a developing current 
to variations in a. To this end, calculations were commenced from ignition, using the 
values shown in table 2. In table 3 values of U ,  C and h at a point 1000 m downstream 
of the mouth of the canyon are shown. The dependence on a is seen to be very weak. 
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10. Conclusions 
As indicated in the Introduction, the purpose of the present paper is a general 

exposition of the equations of motion of turbidity currents, their closure, and their 
solution for the continuous, spatially developing case in submarine canyons. Special 
emphasis is placed on the possibility of self-acceleration, or ignition, by means of the 
incorporation of bed sediment into the current. 

The key approximations in the derivation of the layer-averaged equations are: the 
assumption of concentrations sufficiently small to allow for the use of the Boussinesq 
approximation, the boundary-layer approximations, the similarity assumptions, and 
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FIGURE 16. Sensitivity of a phase diagram to variation (a) in h,/D, (cD. = 0.004, D, = 0.1 mm, 
S = 0.05); ( h )  in D, (cD* =0.004, S =  0.05, h,/D, = 2 x  lo4); (c) in cD. (D, = 0.1 mm, 
h, /D ,  = 2 x lo4, S = 0.05); (d )  in S (cD.  = 0.004, D, = 0.1 mm, h,,/D, = 2 x lo4). 0, ignition point. 

the slab approximations for evaluating the shape coefficient. Some indication of the 
error involved in the last of these approximations is provided by Henderson-Sellers 
(1981) for the case of a plume. 

Two models are presented. The first of these is the three-equation model, which 
can be considered to be a generalization of the model of Ellison & Turner (1959) for 
simple, conservative density currents to the case of eroding and depositing turbidity 
currents. It, consists of relations for fluid mass conservation, sediment mass 



Self-accelerating turbidity currents 173 

conservation, and flow momentum conservation. The model is closed with 
appropriate assumptions for bed resistance, sediment entrainment from the bed, 
near-bed sediment concentration, and water entrainment from above. In particular, 
the bed shear stress is related to the mean velocity of the flow. Numerical solution 
reveals that if the upstream values of velocity U and sediment transport rate 1c. 
are sufficiently large, strong ignition occurs, so that U and $ increase markedly 
downstream. Ignition is caused by an interaction between the equations of flow 
momentum and sediment mass balance. 

A consideration of the balance of mean turbulent energy reveals four important 
mechanisms contributing to the loss of turbulent energy. The first consists of viscous 
dissipation due to the turbulence. The remaining three all fall under the category of 
work done against the buoyancy gradient. They are the work needed to hold the 
existing concentration of sediment in suspension, the work expended in lifting the 
centre of gravity of the suspension as it is diluted by water entrained from above, 
and the work expended in lifting sediment entrained from the bed into the 
suspension. The last term represents an expenditure of energy only if the rate of 
entrainment of bed sediment exceeds the rate of deposition of sediment on the bed; 
in the opposite case, the term represents an energy gain. 

A consideration of these terms leads to the delineation of a generalized K n a p p  
Bagnold-type energy constraint on turbid underflows. According to this constraint, 
if the net rate of supply of energy to the turbulence is less than the sum of the three 
terms representing the rate of working against the buoyancy gradient for a sufficient 
distance or amount of time, the turbulence must vanish, and the turbidity current 
must cease. 

The constraint poses a problem for the three-equation model, which does not 
directly account for turbulent energy balance. The accelerative mechanism for 
igniting currents predicted by this model is so strong that extremely high rates of 
sediment entrainment result. The rates are often so high that the rate of turbulent 
energy expenditure due to the entrainment of bed sediment alone far exceeds the rate 
of production of turbulent energy. It follows that the solutions obtained for ignitive 
turbidity currents via the three-equation model are typically physically impossible. 

Herein, this fault is remedied by the formulation of a four-equation model, in 
which a relation describing the balance of the mean energy of the turbulence is 
explicitly included. The bed shear stress, and thus the sediment entrainment 
coefficient E,, is linked to the level of turbulent energy K rather than the flow 
velocity. In this fashion, if E, is too high the associated loss of turbulent energy will 
act  to reduce K ,  and thus reduce E, to a more appropriate value. The closure 
assumptions for sediment entrainment from the bed, near-bed sediment concentra- 
tion, and water entrainment from above are otherwise identical with those of the 
three-equation model. In addition, an appropriate closure assumption for viscous 
dissipation is introduced. 

The predictions of the four-equation model appear reasonable, and presumably 
have applications to the genesis of submarine canyons. Very little data, however, are 
available with which to test the theory. Nearly all of those data pertain to Scripps 
Submarine Canyon; a detailed application of the four-equation model to this case has 
been carried out by Fukushima et al. (1985). 

It is noted in closing that many aspects of the present model remain tentative in 
the absence of detailed observations taken under controlled conditions. Such 
observations would appear to be very difficult. In the light of this, the many specific. 
predictions presented herein are intended to illustrate the general implications of the 
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present model rather than to suggest that all problems have been resolved. This 
tentative approach can perhaps be justified in the light of the difficulty of field 
observation. 
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Appendix. Derivation of the layer-averaged equations 
A.l. Governing equations for a dilute suspension 

The geometry of figure 1 is considered. The quiescent body of water is assumed to 
be infinitely deep, and unstratified except for the turbidity current itself. The canyon 
cross-section is taken to be rectangular, with a width many times in excess of the 
thickness of the turbidity current. Variation in the lateral direction is neglected. The 
bed possesses a constant, small down-canyon slope S; the x,(x)-coordinate is directed 
down-canyon tangential to the bed, and the x,(z)-coordinate is directed upward 
normal to the bed. 

The equations of motion for a suspension are considered. The suspension is 
assumed to be sufficiently dilute to justify the use of the Boussinesq approximation, 
and the assumption of a kinematic viscosity v equal to the value for clear water. The 
equation of momentum conservation is 

where F(ri, t )  denotes the instantaneous volumetric concentration of suspended 
sediment, iit(xj, t )  d e n o h  the instantaneous flow velocity of the mixture, and#,(xj, t )  
denotes the instantaneous pressure. The vector gi is given by 

Si = g(S, 0, - 1 ), (A 2) 

where g denotes the gravitational acceleration. Also p denotes the density of the 
quiescent fluid, and R = (p,/p- I ) ,  where ps is the material density of the sediment. 

The equation of fluid mass conservation is 

aii, 
axt 
- = 0. 

The velocity of the sediment phase is taken to be equal to the sum of the fluid velocity 
and the sediment fall velocity vs in quiescent water ; the equation of conservation of 
sediment thus becomes 

a; a 
- + - [ ( u ~ - v s f 3 ~ 3 ) q  = 0, 
at ax, 

where a,, denotes the Kronecker delta. 

subtracted from (A 1) by letting 
The hydrostatic pressure balance associated with the quiescent fluid can be 

fi* = P S + f i ,  

where 
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Thus (A 1 )  reduces to  
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(A 5) 

The parameters C,, 9 and c" are split into mean and fluctuating parts, 

si = ui+u;; 9 = p+p' ;  c" = c+c' 

in order to quantify the effect of turbulence. Standard techniques applied to (A 3), 
(A 4) and (A 5) yield the following relations averaged over turbulence: mean fluid 
mass conservation au . 2- - 0;  

ax, 
mean sediment conservation 

denotes the Reynolds flux of sediment; mean momentum conservation 

where 

denotes the kinematic Reynolds stress; energy conservation of the mean flow 

and conservation of mean turbulent energy 

where 
- 

k = $xi u;. 

A.2. Boundary-layer approximations for two-dimensional flow 
The slender-flow, or boundary-layer, approximations for a two-dimensional turbidity 
current are considered. Henceforth xi = (x, y ,  z )  and C, = (C, v", 6). Variation in the 
lateral ( y )  direction is neglected. It is assumed that within the turbidity current, the 
scalings u 9 w and a/az 9 a/ax hold. The turbidity current is assumed to  be fully 
turbulent, with all viscous terms negligible except the viscous dissipation due to the 
turbulence. It is furthermore assumed that lc'w'l 9 Ic'u'I S. 

Under these constraints, the equation of mean fluid mass balance (A 6), becomes 

- -  

au aw 
ax az -+- = 0. 

The upward component of mean momentum balance (A 9) reduces to  
r m  
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corresponding to the extra component of hydrostatic pressure due to  the weight of 
the sediment. The down-canyon component of mean momentum balance (A 9) thus 
approximates to  

where 7 = TI3 = -m. (A 17) 

The equation of mean sediment mass balance, (A 7), approximates to 

ac auc aWc a 
at ax aZ a Z  
-+-+- = --(F-v~c), 

- 
where F = F 3 = c'w'. (A 19) 

The equation of energy balance of the mean flow, (A 1 l ) ,  approximates with the aid 
of (A 15) to  

a a a a au 
- (%') +- at ax a2 a2 

+ - (&'w) = - ( ~ 7 )  + R~cuS-T - . (A 20) 

The equation of mean energy balance of the turbulence, (A 12), approximates to 

where 
au; au; 
ax* axj 

E = V - - .  

The parameter E denotes the mean dissipation rate per unit mass of fluid due to  the 
turbulence. 

The sediment in the turbidity current affects the energy balance in three important 
ways. The work done on the sediment by gravity yields the source of power for the 
flow in the form of the term RgcuS in (A 20). On the other hand, kinetic energy is 
lost to  the flow by the work of turbulence against the downward normal density 
gradient, represented by the term RgF in (A 21). Finally, down-channel changes in 
mean concentration yield a work term associated with changing pressure, the 
term - Rgu(a/ax) 1 c dz in (A 20). 

The term representing the work of turbulence against the density gradient can be 
further reduced with the aid of (A 18), which after some manipulation integrates to  
yield 

Using (A 14) to  eliminate w ,  then, ( A  2 1 )  becomes 
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A.3. Vertically integrated balance equations 
For the geometry of figure 1, (A 16), (A 20) and (A 24) can be integrated in the 
z-direction to yield the following relations : mean momentum balance 

cdz'dz+RgXJm cdz-u:, (A25) 
0 

- 
u; = = -ufwf~2-b (A 26) 

00 

where 

denotes an approximation of the kinematic bed shear stress T(,,~, and z = b denotes 
a level very close to the bed but outside any range where viscous effects are important; 
energy balance of the mean flow 

where 

denotes the integrated mean rate of transfer of kinetic energy from the mean flow 
to the turbulence; and the mean energy balance of the turbulence 

The equation of mean fluid mass balance, (A 14), integrates to yield 

$sr udz+w, = 0, 

where w, is a fictitious velocity necessitated by the nature of the boundary-layer 
approximations. For boundary layers of the type of figure 1, it is customary to set 

ah 

where ahlat represents the temporal rate of growth of the thickness h of the boundary 
layer, and we is an entrainment velocity. Thus (A 30) becomes 

w00=-- at we, 

-+-I ah a u d z =  we. 
at ax 

The thickness of the boundary layer h is defined below. 
The equation of mean sediment mass balance, (A 18), integrates to yield 

00 

UCdZ = Fb-VSCb,  
at 0 

where Fb = FI,=b = m 1 z - b ;  cb = cl,=b- (A 33) 
Again, the vertical-flux terms have been evaluated slightly above the bed in order 
to avoid singular behaviour associated with the neglect of the molecular diffusivity. 
However no matter how h is defined, it is clear that the condition b/h < 1 must be 
satisfied in order to justify the approximation inherent in (A 25) and (A 32). 
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The term Fb represents the rate of entrainment of sediment from the bed into the 
suspension by turbulence. A dimensionless entrainment rate E, can be defined such 
that Fb = v, E,, so (A 32) takes the form 

Equation (A 34) quantifies the change in the amount of sediment in suspension in 
terms of net down-valley inflow and outflow, and net gain by entrainment from (or 
loss by deposition to) the bed. 

A.4. Similarity assumptions : the slab approximations 

From this point on, it is necessary to make several rather severe assumptions in order 
to allow for a tractable model. The first is the assumption of similarity. The 
parameters u7 c and k are assumed to maintain approximately similar profiles in the 
z-direction as they change in time or in the down-valley direction, that is, i t  is assumed 
that 

u(x, 2 7  t )  = U(X, t )  CU(7)’ (A 35a) 

4x9 z ,  t )  = C(X, t) Cc(r), (A 35 b) 

k(x, 2, t ,  = K(x, t, Ck(7)7 (A 35c) 

where 

and 6, Cc and Ck are approximated to be functions of 7 alone. The layer-averaged 
quantities U ,  C and K, and also the layer thickness h, can be determined via four 
appropriately defined moments. One example of such a set of moments is 

UKh = f: ukdz (fa CuCkdg = i), 
0 

UCh = fr ucdz (fm CuCcdr = I), 

V h  = fr u2dz (fm 5“,dy = 1) 

0 

0 

(A 36a) 

(A 36b) 

(A 36c) 

(A 36d) 

(see e.g. Ellison & Turner 1959). Herein K is referred to as the ‘level of turbulence’. 
The following relations are obtained with the aid of (A 35a-c) and (A 36a-d): the 

equation of fluid mass balance, from (A 31), 

the equation of sediment mass balance, from (A 34), 

the equation of momentum balance, from (A 25), 
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the equation of energy balance of the mean flow, from (A 27), 
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and the equation of mean energy of the turbulence, from (A 29), 

where s o h =  sdz; P = P , / h .  r 
Equations (A 38)-(A 41) contain numerous shape factors that  cannot be evaluated 

in the absence of experimental data, but can nevertheless be expected to be of order 
unity. Some assumption is needed concerning them if further progress is t o  be made. 
The simplest one is that  called the 'top-hat' assumption by Turner (1973, p. 168), 
or the 'slab ' assumption by Pantin (1979) : 

With (A 42), equations (A 38), (A 39) and (A 40) reduce to 

aCh aUCh 
-+-= v s ( 4  - Cb)? at ax 

aCh2 - + RgChS - u:, 
aUh aU2h -+- = -1R 

at ax 2 ax 
a i  a i  aCh2 
-- V h + - - V h  = RgChUS-Ph-iRgU-. at 2 ax 2 ax 

(A 43) 

Equations (A 42), (A 37) and (A 43) allow (A 41) to be reduced to 

It is apparent from (A 37), (A 44) and (A 45) that  u*, we and P cannot be specified 
independently; if (A 44) is multiplied by U and reduced with (A 37), the result is 

(A 47) 
a i  a i  aCh2 
-- V h + - -  V h  = RgChUS-iw, U2-u2, U-aRgU- at 2 ax 2 ax . 

Comparing (A 47) and (A 45), i t  is seen that 

Ph = U: U+!ilPw,. (A 48) 

The result is accurate only for shape factors expected to be close to unity. 
Recently Garcia (1985) utilized data from experiments on turbidity currents to 

evaluate the similarity hypotheses embodied in (A 35a) and (A 35b), and the shape 
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factors involving velocity and concentration appearing in (A 38), (A 39), (A 40) and 
(A 41). Within the range ofthe experiments, similarity was shown to be approximated 
well. Those shape factors that  could be evaluated varied from 38 % less than to 13 yo 
greater than the values yielded by the top-hat assumption. The top-hat assumption 
was found to yield good approximations of the shape factors in nearly all cases. 
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